The partial disorder observed in these compounds probably results because the strontium ions are larger than the rare-earth ions, and prefer the more spacious ten-coordinated 4 (a) sites of space group $14 / \mathrm{mcm}$. This does not hold for La^{3+} which may occupy ten-coordinated $(8+2) 4(a)$ sites. In this case, the larger ionic radius for La^{3+} should be used, which would give better agreement in the $r v s V^{1 / 3}$ plot.

To obtain a more reliable basis for the discussion of this problem, the crystal structure of $\mathrm{Sr}_{2} \mathrm{LaAlO}_{5}$ was checked to see whether it is isostructural with the refined structure of $\mathrm{Sr}_{2} \mathrm{EuAlO}_{5}$ (Drofenik \& Golič, 1979). We stopped the refinement at an R value of 0.11 , at which point we saw exactly the same details of the structure.

This structure analysis indicates that La^{3+} occupies the $8(h)$ positions, coordinated by eight O atoms. The nonlinearity of the r vs $V^{1 / 3}$ plot is thus caused by other factors. However, such plots are not always linear. For some perovskite $\mathrm{Ba} M^{4+} \mathrm{O}_{3}$ compounds (where $M=\mathrm{Ti}, \mathrm{Tc}, \mathrm{Sn}, \mathrm{Hf}$, $\mathrm{Zr}, \mathrm{Pb}, \mathrm{Pu}, \mathrm{Np}, \mathrm{Ce}, \mathrm{Th}$) deviations from linearity in such plots were also found (Fukunaga \& Fujita, 1973).

Similar deviations can be found for some other structures, such as $\mathrm{Sm}_{2} M_{2} \mathrm{O}_{7}$ (where $M=\mathrm{Ti}, \mathrm{Ru}, \mathrm{Ir}, \mathrm{Tc}, \mathrm{Sn}, \mathrm{Hf}, \mathrm{Zr}, \mathrm{Pb}$) (Shannon, 1974).

As pointed out earlier (Shannon, 1974) it is possible that all such plots show this behavior, but it becomes more pronounced when a structure type is stable for cations which have a wide range of possible radii, and especially for compounds which contain large polarizable cations.

We thank Professor D. Kolar for his interest in this work and the Boris Kidrič Foundation for financial support.

References

Drofenik, M. \& Golič, L. (1979). Acta Cryst. B35, 1059-1062.
Drofenik, M., Golič, L. \& Kolar, D. (1979). J. Cryst. Growth, 47 (5/6), 739-742.
Fukunaga, O. \& Fuitta, T. (1973). J. Solid State Chem. 8, 331-338.
Shannon, R. D. (1974). Proc. NATO Conf. on Petrophysics, Newcastle-upon-Tyne, April 22-26, pp. 403431.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Acta Cryst. (1980). B36, 3209-3211
Refinement of the $\mathbf{Y}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$ structure at 77 K . By M. FaUChEr, ER 210, CNRS, 92190 Meudon-Bellevue, France and J. Pannetier, Institut Laue-Langevin, BP n^{o} 156, 38042 Grenoble CEDEX, France
(Received 3 June 1980; accepted 23 June 1980)

Abstract

$\mathrm{Y}_{2} \mathrm{O}_{3}$ belongs to the space group $I a 3$ with $Z=16$ and $a=$ 10.6073 (3) \AA at 77 K ; the structural parameters refined from neutron powder diffraction data do not differ significantly from room-temperature values.

1. Introduction

Cubic $\mathrm{Y}_{2} \mathrm{O}_{3}$ is an attractive material for crystal-field studies. Firstly, it is an efficient phosphor host and secondly its structure is relatively simple. Nearly all the fluorescent transitions observed under ultraviolet excitation of the Eu-doped compound originate from only one of the two crystallographic sites available for the rare earth (the C_{2} site). We have recently reported (Dexpert-Ghys \& Faucher, 1979) the symmetry labels associated with the lower electronic levels of Eu^{3+} in the C_{2} site. The optical investigations were carried out at 77 K and the final aim was the determination of crystal-field parameters, which is facilitated by the use of the results of $a b$ initio calculations.

However, such calculations are extremely sensitive to tiny atomic displacements and the influence of temperature on atomic positions cannot be calculated a priori. The investigation by neutron powder diffraction was undertaken to determine the structural parameters of $\mathrm{Y}_{2} \mathrm{O}_{3}$ at 77 K .

The room-temperature structure of $\mathrm{Y}_{2} \mathrm{O}_{3}$ is already well known through neutron diffraction studies on single-crystal
(O'Connor \& Valentine, 1969) or powder material (Bonnet, Delapalme \& Fuess, 1975).

2. Experimental and refinement

The sample material was high purity (99.99%) $\mathrm{Y}_{2} \mathrm{O}_{3}$ (REPL) from Johnson Matthey. The powder diffraction pattern at 77 K was recorded on the D1A high-resolution spectrometer of the Institut Laue-Langevin (ILL) with $\lambda=1.909 \AA$ from the (333) plane of a Ge monochromator. The powdered sample was inserted in a 15 mm diameter vanadium tube. Data were collected from $\theta=12$ to 78° in steps of 0.05°; the measurement time was about 30 s per step. The data from the ten counters were summed with ILL programs (Wolfers, 1970). Diffraction angles and integrated intensities were determined by fitting the shape of the Bragg peaks to Gaussian distributions and the background to a first-order polynomial. The refinement was based on 41 observed intensities (117 hkl); least-squares refinement of the cell parameter leads to $a=10.6073$ (3) \AA. The space group is Ia3 with $Z=16$ and the atoms occupy the following positions:

$\mathrm{Y}(1)$	$8(b)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\mathrm{Y}(2)$	$24(d)$	u	0	$\frac{1}{4}$
O	$48(c)$	x	y	z.

The structural and thermal parameters were refined with the Busing, Martin \& Levy (1962) least-squares program. The (c) 1980 International Union of Crystallography

Table 1. Crystallographic parameters of $\mathrm{Y}_{2} \mathrm{O}_{3}$ at 77 and 300 K , and the scattering length of Y (e.s.d.'s in parentheses)

	u	x	${ }^{1}$	z	$B_{\mathrm{Y} 1}\left(\AA^{2}\right)$	$B_{Y 2}\left(\AA^{2}\right)$	$B_{0}\left(\AA^{2}\right)$	R	$R_{\text {w }}$	$\begin{gathered} b_{\mathrm{Yt}} \\ \left(\times 10^{11} \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} b_{\mathrm{Y}_{2}} \\ \left(\times 10^{11} \mathrm{~mm}\right) \end{gathered}$
Present work (77 K)	-0.0323 (2)	0.3912 (3)	$0 \cdot 1515$ (3)	0.3800 (3)	$0 \cdot 25$ (4)	0.37 (7)	$0 \cdot 36$ (3)	$0 \cdot 038$	0.038	$0 \cdot 770$ (6)	0.770 (10)
Bonnet. Delapalme \& Fuess (1975) (300 K)	-0.0326 (2)	$0.39111(2)$	$0 \cdot 1519$ (2)	0.3806 (3)	0.09*	0.305*	$0.35{ }^{*}$	$0 \cdot 018$	-	0.764 (10)	0.765 (5)
O’Connor \& Valentine (1969) (300	-0.0327	$0 \cdot 3907$ (3)	$0 \cdot 1520$ (3)	0.3804 (3)		Anisotropic		$0 \cdot 105$	-	0.786*	0.786*

* Not refined.

Table 2. Polar coordinates of O atoms with respect to Y in the S_{6} and C_{2} sites (unprimed: real case; primed: ideal fluorite case)

Present work $\mid a=10.6073$ (3) \AA \|							Bonnet et al. (1975)
	$R(\AA)$	$\theta\left({ }^{\circ}\right)$	$\varphi\left({ }^{\circ}\right)$	$R^{\prime}(\AA)$	$\theta^{\prime}\left({ }^{\circ}\right)$	$\varphi^{\prime}\left({ }^{\circ}\right)$	$R(\AA)$
	$2 \cdot 337$ (4)	57.25	$\begin{array}{r} 130.36 \\ -49.64 \end{array}$		54.7356	$\begin{array}{r} 135 \\ -45 \end{array}$	$2 \cdot 333$
$C_{2}\{$	2.268 (4)	69.03	$\begin{array}{r} 40.63 \\ -139.37 \end{array}$	$2 \cdot 2965$		$\begin{array}{r} 45 \\ -135 \end{array}$	2.273
	$2 \cdot 243$ (4)	136.06	$\begin{array}{r} 137.84 \\ -42.15 \end{array}$		$125 \cdot 2644$	$\begin{array}{r} 135 \\ -45 \end{array}$	$2 \cdot 239$
$S_{6}\{$	2.288 (3)	62.47	$\begin{array}{r} -117.63 \\ 2.37 \\ 122.37 \end{array}$	$2 \cdot 2965$	$70 \cdot 5287$	$\begin{array}{r} -120 \\ 0 \\ 120 \end{array}$	$2 \cdot 289$
		117.53	$\begin{array}{r} -177.63 \\ -57.63 \\ 62.37 \end{array}$		109.4713	$\begin{array}{r} -180 \\ -60 \\ 60 \end{array}$	

function minimized is $\sum_{i} w_{i}\left\{F_{o}^{2}(i)-\sum_{i^{\prime}} m\left(i^{\prime}\right)\left[S F_{c}\left(i^{\prime}\right)\right]^{2}\right\}^{2}$. where $w_{i}=1 / \sigma_{i}^{2}$ is the weight of the measure, the i summation runs over the observed planes, and the i^{\prime} summation over different Bragg peaks contributing to a single reflexion. $F_{o}^{2}(i)$ is the observed intensity corrected for the Lorentz factor, S is the scale factor and $F_{c}^{2}\left(i^{\prime}\right)$ the calculated intensity.

The variable parameters were u, x, y and z, the three isotropic thermal parameters $B_{\mathrm{Y}_{1}}, B_{\mathrm{Y} 2}$, and $B_{\mathrm{O}^{\prime}}$, and the overall scale factor S. The starting u, x_{0}, y and z values were those obtained by Bonnet et al. (1975). Starting $B_{Y 1}, B_{Y 2}$ and B_{O} values were set equal to zero. The scattering length for Y was that determined by Bonnet et al. (1975), i.e. $b_{\mathrm{Y}}=0.765$ $\times 10^{-11} \mathrm{~mm}$ and for O that given by Bacon (1972). $b_{\mathrm{O}}=$ $0.580 \times 10^{-11} \mathrm{~mm}$.

The final refined values with their e.s.d.'s are reported in Table 1. The expressions for the reliability factors are:

$$
\begin{gathered}
\left.R=\left.\frac{\vdots}{i}\left|F_{o}^{2}(i)-\frac{\vdots}{i}\right| S F\left(i^{\prime}\right)\right|^{2} m\left(i^{\prime}\right) \right\rvert\, \frac{\Lambda}{i} F_{o}^{2}(i) \\
R_{w}=\left(\left.\left.\frac{\vdots}{i} w(i)\left\langle F_{o}^{2}(i)-\frac{\vdots}{i^{\prime}} m\left(i^{\prime}\right)\right| S F\left(i^{\prime}\right)\right|^{2}\right|^{2} / \frac{\vdots}{i} w_{i}\left|F_{o}^{2}(i)\right|^{2}\right)^{1 / 2} .
\end{gathered}
$$

An attempt was made to refine the scattering length of $Y(1)$ and $Y(2)$, assigning to the thermal parameters their best
refined values. A slight but identical change occurred for both, yielding $b_{\mathrm{Y}}=0.770$ (8): the reliability factors were not significantly improved.

Absorption corrections of the thermal parameters (Hewat. 1979) are negligible since $\mu r=0.014$.

3. Discussion

If the e.s.d.'s are taken into account, the differences between the sets of structural parameters listed in Table 1 are insignificant.
Polar coordinates of O atoms. $R(\AA), \theta\left(^{\circ}\right), \varphi\left(^{\circ}\right)$, with Y as origin have been calculated and are reported in Table 2. for both $8(b)\left(S_{6}\right)$ and $24(d)\left(C_{2}\right)$ sites. In Table 2 are also reported the $\mathrm{Y}-\mathrm{O}$ distances calculated from the data of Bonnet et al. (1975), and the polar coordinates of ligands in the ideal fluorite case (with the same vacancies), but with $u=$ $0, x=0.375, y=0.125, z=0.375$. For the C_{2} site, the origin is $u, 0 . \frac{1}{4}$. A 90° rotation around O_{1} is applied to bring the C_{2} axis along $O z$. For the S_{6} site, the origin is $0 \cdot 25 \cdot 0 \cdot 25$. $0 \cdot 25$. Two rotations are applied to bring the S_{6} axis along $O z:-45^{\circ}$ around $O z$, and -54.7356° around $O r$. The real S_{6} site is twisted by 17.63° with respect to the ideal one and flattened along the S_{6} axis.

In the C_{2} site the displacement of the two O atoms at $2.268 \AA$ towards the vacancies causes an appreciable opening of the $\mathrm{O}-\mathrm{Y}-\mathrm{O}$ bond (increase of θ).

References

Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Bonnet, M., Delapalme, A. \& Fuess, H. (1975). Acta Crust. A 31, 264-265.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Dexpert-Ghys, J. \& Faucher, M. (1979). Phys. Rev. B, 20, 10-20.
Hewat, A. W. (1979). Acta Cryst. A35, 248.
O'Connor, B. H. \& Valentine, T. M. (1969). Acta Cryst. B25, 2140-2144.
Wolfers, P. (1970). Unpublished computer program.

Acta Crust. (1980). B36, 3211
The crystal structures of nine K feldspars from the Adamello Massif (Northern Italy): erratum.
By A. Dal Negro, R. De Pieri and S. Quareni, \dagger Istituto di Mineralogia e Petrologia, Università di Padova, Italy and W. H. TAylor, Cavendish Laboratory, Cambridge, England
(Received 11 August 1980)

Abstract

Table 1 of the paper by Dal Negro, De Pieri, Quareni \& Taylor |Acta Cryst. (1978). B34, 2699-2707| contains incorrect values for some of the direct-cell angles and volumes. A corrected version of part of Table 1 is given.

Table 1 shows the correct values of the cell parameters for the nine K feldspars.
† Deceased 23 August 1978.

Table 1. Corrected cell parameters

	P2B	P2A	CA1A	P17C	A1D	$C A 1 B$	PlC	RC20C	CA1E
\checkmark	8.589 (2) ${ }^{\circ}$	8.583(2) ${ }^{\circ}$	$8.563(2) \AA$	$8.567(2){ }^{\circ}$	$8.564(2){ }^{\circ}$	8.560(2) ${ }^{\circ}$	$8.574(2){ }_{\text {A }}$	8.567 (2) ${ }^{\circ}$	$8.561(2) \AA$
b	$13.013(7)$	12.988(7)	$12.990(7)$	$12.980(7)$	12.984(7)	12.984(7)	$12.962(7)$	12.970(7)	12.972(7)
c	$7.197(2)$	$7.202(2)$	$7.210(2)$	$7.200(2)$	$7.201(2)$	$7.209(2)$	$7.210(2)$	7.221 (2)	$7.223(2)$
\checkmark	90°	90°	90°	$90^{\circ} 4^{\prime}$	$90^{\circ} 8^{\prime}$	$90^{\circ} 17^{\prime}$	$90^{\circ} 211$	$90^{\circ} 26^{\prime}$	$90^{\circ} 34^{\prime}$
B	$116^{\circ} 1^{\prime}$	$116^{\circ} 3^{\prime}$	$115^{\circ} 56^{\prime}$	$116^{\circ} 2^{\prime}$	$116^{\circ} 1^{\prime}$	$116^{\circ} 2^{\prime}$	$116^{\circ} 2^{\prime}$	$116^{\circ} 0^{\prime}$	$115^{\circ} 5^{\prime \prime}$
Y	90°	90°	90°	$89^{\circ} 45^{\prime}$	$89^{\circ} 32^{\prime}$	$89^{\circ} 2^{\prime}$	$88^{\circ} 48^{\prime}$	$88^{\circ} 29^{\prime}$	$87^{\circ} 55^{\prime}$
α^{*}	90°	90°	90°	$90^{\circ} 3^{\prime}$	$90^{\circ} 5^{\prime}$	$90^{\circ} 9^{\prime}$	$90^{\circ} 12^{\prime}$	$90^{\circ} 15^{\prime}$	$90^{\circ} 23^{\prime}$
${ }^{*}$	90°	90°	90°	$90^{\circ} 15^{\prime}$	$90^{\circ} 27^{\prime}$	$90^{\circ} 56^{\prime}$	$91^{\circ} 10^{\prime}$	$91^{\circ} 28^{\prime}$	$92^{\circ} 2^{\prime}$
V	$722.9{ }^{\circ}{ }^{\text {, }}$	$721.3 \AA^{3}$	$721.2 \AA^{3}$	$719.4 \mathrm{~A}^{3}$	$719.5 \mathrm{~A}^{3}$	$719.8 \AA^{3}$	$719.8 A^{3}$	$720.9{ }^{\circ}{ }^{3}$	$720.9 \mathrm{~A}^{3}$
${ }^{F}{ }^{F} 000 \text { utal }$	550.96	550.96	550.56	548.74	550.14	550.56	550.19	548.58	550.56
Tutal number of reflections	2088	2088	2047	2093	2079	2095	2091	2092	2097
Reflectuons	1638	1587	1640	1738	1907	1637	1455	1773	1737
$R_{\text {final }}$	3.4	3.4	3.6	3.2	2.4	3.8	5.3	3.5	2.8

0567-7408/80/123211-01\$01.00 (C) 1980 International Union of Crystallography

International Union of Crystallography

Acta Cryst. (1980). B36, 3211-3212

Structure Reports

Volume 43B of Structure Reports has recently been published. It covers the literature for organic compounds for 1977, is bound in two parts (vi +804 pages and vi +799 pages) and costs 306 Netherlands guilders for subscribers
with standing orders. The full price for individual copies is 360 guilders but personal subscribers may buy a copy for their own use at 180 guilders.

Orders for these publications may be placed direct with the publisher, D. Reidel Publishing Company, PO Box 17, 3300 AA Dordrecht, The Netherlands, with Polycrystal Book Service, PO Box 11567, Pittsburgh, PA 15238, USA, or with any bookseller. Trade orders should be sent to Reidel.

